Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors.

نویسندگان

  • Kasper B Hansen
  • Nami Tajima
  • Rune Risgaard
  • Riley E Perszyk
  • Lars Jørgensen
  • Katie M Vance
  • Kevin K Ogden
  • Rasmus P Clausen
  • Hiro Furukawa
  • Stephen F Traynelis
چکیده

N-methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels assembled from GluN1 and GluN2 subunits. We used a series of N-hydroxypyrazole-5-glycine (NHP5G) partial agonists at the GluN2 glutamate binding site as tools to study activation of GluN1/GluN2A and GluN1/GluN2D NMDA receptor subtypes. Using two-electrode voltage-clamp electrophysiology, fast-application patch-clamp, and single-channel recordings, we show that propyl- and ethyl-substituted NHP5G agonists have a broad range of agonist efficacies relative to the full agonist glutamate (<1-72%). Crystal structures of the agonist binding domains (ABDs) of GluN2A and GluN2D do not reveal any differences in the overall domain conformation induced by binding of the full agonist glutamate or the partial agonist propyl-NHP5G, which is strikingly different from ABD structures of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoate (AMPA) and kainate receptors bound to full and partial agonists. Subsequent evaluation of relative NHP5G agonist efficacy at GluN2A-GluN2D chimeric subunits implicates the amino-terminal domain (ATD) as a strong determinant of agonist efficacy, suggesting that interdomain interactions between the ABD and the ATD may be a central element in controlling the manner by which agonist binding leads to channel opening. We propose that variation in the overall receptor conformation, which is strongly influenced by the nature of interdomain interactions in resting and active states, mediates differences in agonist efficacy and partial agonism at the GluN2 subunits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis.

The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding site. Key residues were selected for mutation based on ligand-protein docking studies using a homology...

متن کامل

Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling.

We have used site-directed mutagenesis of amino acids located within the S1 and S2 ligand binding domains of the NR2A N-methyl-D-aspartate (NMDA) receptor subunit to explore the nature of ligand binding. Wild-type or mutated NR1/NR2A NMDA receptors were expressed in Xenopus laevis oocytes and studied using two electrode voltage clamp. We investigated the effects of mutations in the S1 and S2 re...

متن کامل

Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors.

NMDA receptors are ionotropic glutamate receptors that mediate excitatory synaptic transmission and have been implicated in several neurological diseases. We have evaluated the mechanism of action of a class of novel subunit-selective NMDA receptor antagonists, typified by (E)-4-(6-methoxy-2-(3-nitrostyryl)-4-oxoquinazolin-3(4H)-yl)-benzoic acid (QNZ46). We found that QNZ46 inhibits NMDA recept...

متن کامل

Molecular Determinants of Agonist Discrimination by NMDA Receptor Subunits: Analysis of the Glutamate Binding Site on the NR2B Subunit

NMDA receptors require both L-glutamate and the coagonist glycine for efficient channel activation. The glycine binding site of these heteromeric receptor proteins is formed by regions of the NMDAR1 (NR1) subunit that display sequence similarity to bacterial amino acid binding proteins. Here, we demonstrate that the glutamate binding site is located on the homologous regions of the NR2B subunit...

متن کامل

Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors.

N-methyl-D-aspartate (NMDA) receptors are glutamate-gated ion channels whose function is critical for normal excitatory synaptic transmission in the brain and whose dysfunction has been implicated in several neurologic conditions. NMDA receptor function is subject to extensive allosteric regulation both by endogenous compounds and by exogenous small molecules. Elucidating the structural determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2013